Физика твердого тела
§ 51. Электрические и магнитные свойства твердых тел
Условия задач и ссылки на решения:
51.1 Определить концентрацию n свободных электронов в металле при температуре T=0 К. Энергию Ферми ε принять равной 1 эВ.
РЕШЕНИЕ
51.2 Определить отношение концентраций n1/n2 свободных электронов при Т=0 в литии и цезии, если известно, что уровни Ферми в этих металлах соответственно равны еj,1=4,72 эВ, ej,2 = 1,53 эВ.
РЕШЕНИЕ
51.3 Определить число свободных электронов, которое приходится на один атом натрия при температуре Т= 0 К. Уровень Ферми еj для натрия равен 3,12 эВ. Плотность ρ натрия равна 970 кг/м3.
РЕШЕНИЕ
51.4 Во сколько раз число свободных электронов, приходящихся на один атом металла при T=0. больше в алюминии, чем в меди, если уровни Ферми соответственно равны еj1=11,7эВ, ej2 =7,0 эВ?
РЕШЕНИЕ
51.5 Определить вероятность того, что электрон в металле займет энергетическое состояние, находящееся в интервале Δе=0,05 эВ ниже уровня Ферми и выше уровня Ферми, для двух температур: 1) T1=290 К; 2) T2=58 К.
РЕШЕНИЕ
51.6 Вычислить среднюю кинетическую энергию е электронов в металле при температуре T=0 К, если уровень Ферми еj=7 эВ.
РЕШЕНИЕ
51.7 Металл находится при температуре T=0 К. Определить, во сколько раз число электронов с кинетической энергией от еf/2 до еf, больше числа электронов с энергией от 0 до еf/2.
РЕШЕНИЕ
51.8 Электроны в металле находятся при температуре Т=0 К. Найти относительное число ΔN/N свободных электронов, кинетическая энергия которых отличается от энергии Ферми не более чем на 2 %.
РЕШЕНИЕ
51.9 Оценить температуру Tкр вырождения для калия, если принять, что на каждый атом приходится по одному свободному электрону. Плотность ρ калия 860 кг/м3.
РЕШЕНИЕ
51.10 Определить отношение концентрации n max электронов в металле (при T=0 К), энергия которых отличается от максимальной не более чем на Δе, к концентрации электронов n min, энергии которых не превышают значения е=Δе; Δе принять равным 0,01еf.
РЕШЕНИЕ
51.11 Зная распределение dn(е) электронов в металле по энергиям, установить распределение dn(p) электронов по импульсам. Найти частный случай распределения при T=0 К.
РЕШЕНИЕ
51.12 По функции распределения dп (р) электронов в металле по импульсам установить распределение dn(v) по скоростям: 1) при любой температуре T; 2) при T=0 К.
РЕШЕНИЕ
51.13 Определить максимальную скорость vmах электронов в металле при T=0 К, если уровень Ферми еf=5эВ.
РЕШЕНИЕ
51.14 Выразить среднюю скорость (v) электронов в металле при T=0 К через максимальную скорость v mах. Вычислить (v) для металла, уровень Ферми еf которого при T=0 К равен 6эВ.
РЕШЕНИЕ
51.15 Металл находится при температуре T=0 К. Определить, во сколько раз число электронов со скоростями от v max/2 до v mах больше числа электронов со скоростями от 0 до vmax/2.
РЕШЕНИЕ
51.16 Выразить среднюю квадратичную скорость √(v2) электронов в металле при T=0 К через максимальную скорость vmax электронов. Функцию распределения электронов по скоростям считать известной.
РЕШЕНИЕ
51.17 Зная распределение dn(v) электронов в металле по скоростям, выразить (1/v) через максимальную скорость vmax электронов в металле. Металл находится при T=0 К.
РЕШЕНИЕ
51.18 Определить уровень Ферми еf в собственном полупроводнике, если энергия ΔЕ0 активации равна 0,1 эВ. За нулевой уровень отсчета кинетической энергии электронов принять низший уровень зоны проводимости.
РЕШЕНИЕ
51.19 Собственный полупроводник (германий) имеет при некоторой температуре удельное сопротивление ρ=0,48 Ом*м. Определить концентрацию n носителей заряда, если подвижности bnи bp электронов и дырок соответственно равны 0,36 и 0,16 м2/(В*с).
РЕШЕНИЕ
51.20 Удельная проводимость γ кремния с примесями равна 112 См/м. Определить подвижность bp дырок и их концентрацию np, если постоянная Холла RH=3,66*10-4 м3/Кл. Принять, что полупроводник обладает только дырочной проводимостью.
РЕШЕНИЕ
51.21 В германии часть атомов замещена атомами сурьмы. Рассматривая дополнительный электрон примесного атома но модели Бора, оценить его энергию E связи и радиус г орбиты. Диэлектрическая проницаемость е германия равна 16.
РЕШЕНИЕ
51.22 Полупроводник в виде тонкой пластины шириной l= 1 см и длиной L= 10 см помещен в однородное магнитное поле с индукцией В=0,2 Тл. Вектор магнитной индукции перпендикулярен плоскости пластины. К концам пластины (по направлению L) приложено постоянное напряжение U=300 B. Определить холловскую разность потенциалов UH на гранях пластины, если постоянная Холла RH=0,1 м3/Кл, удельное сопротивление ρ=0,5Ом*м.
РЕШЕНИЕ
51.23 Тонкая пластина из кремния шириной l=2см помещена перпендикулярно линиям индукции однородного магнитного поля (B=0,5 Тл). При плотности тока j=2 мкА/мм2, направленного вдоль пластины, холловская разность потенциалов Uн оказалась равной 2,8 B. Определить концентрацию n носителей заряда
РЕШЕНИЕ
51.24 Определить гиромагнитное отношение γ для свободного электрона.
РЕШЕНИЕ
51.25 Свободный электрон находится в постоянном магнитном поле (B0=1 Тл). Определить частоту v0 переменного магнитного поля, при которой происходит резонансное поглощение энергии электроном (g-фактор для свободного электрона равен 2).
РЕШЕНИЕ
51.26 Определить отношение ωЭПР/ωЦИК резонансной частоты электронного парамагнитного резонанса к циклотронной частоте (g фактор равен 2,00232).
РЕШЕНИЕ
51.27 Стандартные спектрометры для наблюдения электронного парамагнитного резонанса (ЭПР) имеют на одном из диапазонов фиксированную частоту v0=9,9 ГГц. Определить магнитную индукцию поля В0, при которой происходит резонансное поглощение энергии радиочастотного поля свободным электроном (g фактор равен 2).
РЕШЕНИЕ
51.28 Определить гиромагнитное отношение γ для свободного протона.
РЕШЕНИЕ
51.29 Свободный протон находится в постоянном магнитном поле (В0= 1 Тл). Определить частоту v0 переменного магнитного поля, при которой происходит резонансное поглощение энергии протоном (g-фактор равен 5,58).
РЕШЕНИЕ
51.30 В опытах по изучению магнитным резонансным методом магнитных свойств атомов 25Mg в основном состоянии обнаружено резонансное поглощение энергии при магнитной индукции B0 поля, равной 0,54 Тл, и частоте v0 переменного магнитного поля, равной 1,4 МГц. Определить ядерный g-фактор.
РЕШЕНИЕ
51.31 Методом магнитного резонанса определяют магнитный момент нейтрона. Резонансное поглощение наблюдается при магнитной индукции В0 поля, равной 0,682 Тл, и частоте v0 переменного магнитного поля, равной 19,9 МГц. Вычислить ядерный g-фактор и магнитный момент μn нейтрона. Известно, что направления спинового механического и магнитного моментов противоположны. Спин нейтрона I=1/2.
РЕШЕНИЕ
51.32 Для молекулы HD, находящейся в основном состоянии, ядерный магнитный резонанс наблюдался: 1) для протонов (I=1/2) в постоянном магнитном поле (B0=94 мТл) при частоте v0 переменного магнитного поля, равной 4 МГц; 2) для дейтонов (I=1) соответственно при B0=0,37 Тл и v0=2,42МГЦ. Определить по этим данным g-факторы и магнитные моменты μр и μd протона и дейтона (в единицах μN).
РЕШЕНИЕ
51.33 При какой частоте v0 переменного магнитного поля будет наблюдаться ЯМР ядер 19Р (I=1/2; μ=2,63μN), если магнитная индукция B0 постоянного поля равна 2,35 Тл?
РЕШЕНИЕ
51.34 Ядра Li (I=3/2 и g=2,18) находятся в однородном магнитном поле (B0=2 Тл). Температура Т окружающей среды равна 80 К. Найти отношение заселенностей каждого из возможных энергетических уровней к заселенности уровня с наименьшей энергией.
РЕШЕНИЕ
1 Кусок металла объема V=20 см3 находится при температуре T=0. Определить число ΔN свободных электронов, импульсы которых отличаются от максимального импульса р mах не более чем на 0,1 p mах. Энергия Ферми еf=5эВ.
РЕШЕНИЕ
2 Образец из германия n-типа в виде пластины длиной L=10 см и шириной 1=6 мм помещен в однородное магнитное поле (В=0,1 Тл) перпендикулярно линиям магнитной индукции. При напряжении U=250 B, приложенном к концам пластины, возникает холловская разность потенциалов (Jн= =8,8 мВ. Определить: 1) постоянную ХоллаRH; 2) концентрацию nn носителей тока. Удельную проводимость у германия принять равной 80 См/м.
РЕШЕНИЕ
3 Образец из вещества, содержащего эквивалентные ядра (протоны), находится в однородном внешнем магнитном поле (В= 1 Тл). Определить: 1) относительную разность заселенностей энергетических уровней при температуре Т=300 К; 2) частоту v0, при которой будет происходить ядерный магнитный резонанс. Экранирующим действием электронных оболочек и соседних ядер пренебречь.
РЕШЕНИЕ
РЕШЕНИЕ
51.2 Определить отношение концентраций n1/n2 свободных электронов при Т=0 в литии и цезии, если известно, что уровни Ферми в этих металлах соответственно равны еj,1=4,72 эВ, ej,2 = 1,53 эВ.
РЕШЕНИЕ
51.3 Определить число свободных электронов, которое приходится на один атом натрия при температуре Т= 0 К. Уровень Ферми еj для натрия равен 3,12 эВ. Плотность ρ натрия равна 970 кг/м3.
РЕШЕНИЕ
51.4 Во сколько раз число свободных электронов, приходящихся на один атом металла при T=0. больше в алюминии, чем в меди, если уровни Ферми соответственно равны еj1=11,7эВ, ej2 =7,0 эВ?
РЕШЕНИЕ
51.5 Определить вероятность того, что электрон в металле займет энергетическое состояние, находящееся в интервале Δе=0,05 эВ ниже уровня Ферми и выше уровня Ферми, для двух температур: 1) T1=290 К; 2) T2=58 К.
РЕШЕНИЕ
51.6 Вычислить среднюю кинетическую энергию е электронов в металле при температуре T=0 К, если уровень Ферми еj=7 эВ.
РЕШЕНИЕ
51.7 Металл находится при температуре T=0 К. Определить, во сколько раз число электронов с кинетической энергией от еf/2 до еf, больше числа электронов с энергией от 0 до еf/2.
РЕШЕНИЕ
51.8 Электроны в металле находятся при температуре Т=0 К. Найти относительное число ΔN/N свободных электронов, кинетическая энергия которых отличается от энергии Ферми не более чем на 2 %.
РЕШЕНИЕ
51.9 Оценить температуру Tкр вырождения для калия, если принять, что на каждый атом приходится по одному свободному электрону. Плотность ρ калия 860 кг/м3.
РЕШЕНИЕ
51.10 Определить отношение концентрации n max электронов в металле (при T=0 К), энергия которых отличается от максимальной не более чем на Δе, к концентрации электронов n min, энергии которых не превышают значения е=Δе; Δе принять равным 0,01еf.
РЕШЕНИЕ
51.11 Зная распределение dn(е) электронов в металле по энергиям, установить распределение dn(p) электронов по импульсам. Найти частный случай распределения при T=0 К.
РЕШЕНИЕ
51.12 По функции распределения dп (р) электронов в металле по импульсам установить распределение dn(v) по скоростям: 1) при любой температуре T; 2) при T=0 К.
РЕШЕНИЕ
51.13 Определить максимальную скорость vmах электронов в металле при T=0 К, если уровень Ферми еf=5эВ.
РЕШЕНИЕ
51.14 Выразить среднюю скорость (v) электронов в металле при T=0 К через максимальную скорость v mах. Вычислить (v) для металла, уровень Ферми еf которого при T=0 К равен 6эВ.
РЕШЕНИЕ
51.15 Металл находится при температуре T=0 К. Определить, во сколько раз число электронов со скоростями от v max/2 до v mах больше числа электронов со скоростями от 0 до vmax/2.
РЕШЕНИЕ
51.16 Выразить среднюю квадратичную скорость √(v2) электронов в металле при T=0 К через максимальную скорость vmax электронов. Функцию распределения электронов по скоростям считать известной.
РЕШЕНИЕ
51.17 Зная распределение dn(v) электронов в металле по скоростям, выразить (1/v) через максимальную скорость vmax электронов в металле. Металл находится при T=0 К.
РЕШЕНИЕ
51.18 Определить уровень Ферми еf в собственном полупроводнике, если энергия ΔЕ0 активации равна 0,1 эВ. За нулевой уровень отсчета кинетической энергии электронов принять низший уровень зоны проводимости.
РЕШЕНИЕ
51.19 Собственный полупроводник (германий) имеет при некоторой температуре удельное сопротивление ρ=0,48 Ом*м. Определить концентрацию n носителей заряда, если подвижности bnи bp электронов и дырок соответственно равны 0,36 и 0,16 м2/(В*с).
РЕШЕНИЕ
51.20 Удельная проводимость γ кремния с примесями равна 112 См/м. Определить подвижность bp дырок и их концентрацию np, если постоянная Холла RH=3,66*10-4 м3/Кл. Принять, что полупроводник обладает только дырочной проводимостью.
РЕШЕНИЕ
51.21 В германии часть атомов замещена атомами сурьмы. Рассматривая дополнительный электрон примесного атома но модели Бора, оценить его энергию E связи и радиус г орбиты. Диэлектрическая проницаемость е германия равна 16.
РЕШЕНИЕ
51.22 Полупроводник в виде тонкой пластины шириной l= 1 см и длиной L= 10 см помещен в однородное магнитное поле с индукцией В=0,2 Тл. Вектор магнитной индукции перпендикулярен плоскости пластины. К концам пластины (по направлению L) приложено постоянное напряжение U=300 B. Определить холловскую разность потенциалов UH на гранях пластины, если постоянная Холла RH=0,1 м3/Кл, удельное сопротивление ρ=0,5Ом*м.
РЕШЕНИЕ
51.23 Тонкая пластина из кремния шириной l=2см помещена перпендикулярно линиям индукции однородного магнитного поля (B=0,5 Тл). При плотности тока j=2 мкА/мм2, направленного вдоль пластины, холловская разность потенциалов Uн оказалась равной 2,8 B. Определить концентрацию n носителей заряда
РЕШЕНИЕ
51.24 Определить гиромагнитное отношение γ для свободного электрона.
РЕШЕНИЕ
51.25 Свободный электрон находится в постоянном магнитном поле (B0=1 Тл). Определить частоту v0 переменного магнитного поля, при которой происходит резонансное поглощение энергии электроном (g-фактор для свободного электрона равен 2).
РЕШЕНИЕ
51.26 Определить отношение ωЭПР/ωЦИК резонансной частоты электронного парамагнитного резонанса к циклотронной частоте (g фактор равен 2,00232).
РЕШЕНИЕ
51.27 Стандартные спектрометры для наблюдения электронного парамагнитного резонанса (ЭПР) имеют на одном из диапазонов фиксированную частоту v0=9,9 ГГц. Определить магнитную индукцию поля В0, при которой происходит резонансное поглощение энергии радиочастотного поля свободным электроном (g фактор равен 2).
РЕШЕНИЕ
51.28 Определить гиромагнитное отношение γ для свободного протона.
РЕШЕНИЕ
51.29 Свободный протон находится в постоянном магнитном поле (В0= 1 Тл). Определить частоту v0 переменного магнитного поля, при которой происходит резонансное поглощение энергии протоном (g-фактор равен 5,58).
РЕШЕНИЕ
51.30 В опытах по изучению магнитным резонансным методом магнитных свойств атомов 25Mg в основном состоянии обнаружено резонансное поглощение энергии при магнитной индукции B0 поля, равной 0,54 Тл, и частоте v0 переменного магнитного поля, равной 1,4 МГц. Определить ядерный g-фактор.
РЕШЕНИЕ
51.31 Методом магнитного резонанса определяют магнитный момент нейтрона. Резонансное поглощение наблюдается при магнитной индукции В0 поля, равной 0,682 Тл, и частоте v0 переменного магнитного поля, равной 19,9 МГц. Вычислить ядерный g-фактор и магнитный момент μn нейтрона. Известно, что направления спинового механического и магнитного моментов противоположны. Спин нейтрона I=1/2.
РЕШЕНИЕ
51.32 Для молекулы HD, находящейся в основном состоянии, ядерный магнитный резонанс наблюдался: 1) для протонов (I=1/2) в постоянном магнитном поле (B0=94 мТл) при частоте v0 переменного магнитного поля, равной 4 МГц; 2) для дейтонов (I=1) соответственно при B0=0,37 Тл и v0=2,42МГЦ. Определить по этим данным g-факторы и магнитные моменты μр и μd протона и дейтона (в единицах μN).
РЕШЕНИЕ
51.33 При какой частоте v0 переменного магнитного поля будет наблюдаться ЯМР ядер 19Р (I=1/2; μ=2,63μN), если магнитная индукция B0 постоянного поля равна 2,35 Тл?
РЕШЕНИЕ
51.34 Ядра Li (I=3/2 и g=2,18) находятся в однородном магнитном поле (B0=2 Тл). Температура Т окружающей среды равна 80 К. Найти отношение заселенностей каждого из возможных энергетических уровней к заселенности уровня с наименьшей энергией.
РЕШЕНИЕ
1 Кусок металла объема V=20 см3 находится при температуре T=0. Определить число ΔN свободных электронов, импульсы которых отличаются от максимального импульса р mах не более чем на 0,1 p mах. Энергия Ферми еf=5эВ.
РЕШЕНИЕ
2 Образец из германия n-типа в виде пластины длиной L=10 см и шириной 1=6 мм помещен в однородное магнитное поле (В=0,1 Тл) перпендикулярно линиям магнитной индукции. При напряжении U=250 B, приложенном к концам пластины, возникает холловская разность потенциалов (Jн= =8,8 мВ. Определить: 1) постоянную ХоллаRH; 2) концентрацию nn носителей тока. Удельную проводимость у германия принять равной 80 См/м.
РЕШЕНИЕ
3 Образец из вещества, содержащего эквивалентные ядра (протоны), находится в однородном внешнем магнитном поле (В= 1 Тл). Определить: 1) относительную разность заселенностей энергетических уровней при температуре Т=300 К; 2) частоту v0, при которой будет происходить ядерный магнитный резонанс. Экранирующим действием электронных оболочек и соседних ядер пренебречь.
РЕШЕНИЕ