Бамбукес | Bambookes
Поиск по сайту
Решебник
Лабораторки
Задачи
Книги
Форум
РЕПЕТИТОРЫ и ЗАКАЗ РАБОТ
Главная
»
Обучение
»
Решение задач
»
Физика - Решение задач
В категории материалов:
8965
Показано материалов:
3401-3450
Список учебных материалов, доступных онлайн в данной категории:
Страницы:
«
1
2
...
67
68
69
70
71
...
179
180
»
9555.
16.22
Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. После того как пространство между линзой и стеклянной пластинкой заполнили жидкостью, радиусы темных колец в отраженном свете уменьшились в 1,25 раза. Найти показатель преломления жидкости (решение)
9554.
16.21
Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны 500 нм, падающим по нормали к поверхности пластинки. Пространство между линзой и стеклянной пластинкой заполнено водой. Найти толщину слоя воды между линзой и пластинкой в том месте, где наблюдается третье светлое кольцо в отраженном свете (решение)
9553.
16.20
Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны 600 нм, падающим по нормали к поверхности пластинки. Найти толщину воздушного слоя между линзой и стеклянной пластинкой в том месте, где наблюдается четвертое темное кольцо в отраженном свете (решение)
9552.
16.19
Установка для получения колец Ньютона освещается светом с длиной волны 589 нм, падающим по нормали к поверхности пластинки. Радиус кривизны линзы R = 10 м. Пространство между линзой и стеклянной пластинкой заполнено жидкостью. Найти показатель преломления жидкости, если радиус третьего светлого кольца в проходящем свете r3 = 3,65 мм (решение)
9551.
16.18
Установка для получения ,колец Ньютона освещается светом от ртутной дуги, падающим по нормали к поверхности пластинки. Наблюдение ведется в проходящем свете. Какое по порядку светлое кольцо, соответствующее линии λ1 = 579,1 нм, совпадает со следующим светлым кольцом, соответствующим линии λ2 = 577 нм (решение)
9550.
16.17
Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Наблюдение ведется в отраженном свете. Расстояние между вторым и двадцатым темными кольцами l1 =4,8 мм. Найти расстояние между третьим и шестнадцатым темными кольцами Ньютона (решение)
9549.
16.16
Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Радиус кривизны линзы R = 15 м. Наблюдение ведется в отраженном свете. Расстояние между пятым и двадцать пятым светлыми кольцами Ньютона l = 9 мм. Найти длину волны монохроматического света (решение)
9548.
16.15
Установка для получения колец Ньютона освещается белым светом, падающим по нормали к поверхности пластинки. Радиус кривизны линзы R = 5 м. Наблюдение ведется в проходящем свете. Найти радиусы четвертого синего кольца (λс= 400 нм) и третьего красного кольца (λ кр=630 нм). (решение)
9547.
16.14
Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Радиус кривизны линзы R = 8,6 м. Наблюдение ведется в отраженном свете. Измерениями установлено, что радиус четвертого темного кольца, считая центральное темное пятно за нулевое r4 = 4,5 мм. Найти длину волны падающего света (решение)
9546.
16.13
Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Наблюдение ведется в отраженном свете. Радиусы двух соседних темных колец равны r k = 4 мм и r k +1 = 4,38 мм. Радиус кривизны линзы R = 6,4 м. Найти порядковые номера колец и длину волны падающего света (решение)
9545.
16.12
Пучок света с λ = 582 нм падает перпендикулярно к поверхности стеклянного клина. Угол клина 20′′. Какое число темных интерференционных полос приходится на единицу длины клина? Показатель преломления стекла n = 1,5. (решение)
9544.
16.11
Мыльная пленка, расположенная вертикально, образует клин вследствие стекания жидкости. Интерференция наблюдается в отраженном свете через красное стекло (λ1 = 631 нм). Расстояние между соседними красными полосами l1 = 3 мм. Затем эта пленка наблюдается через синее стекло (λ2 = 400 нм). Найти расстояние между соседними синими полосами. Считать, что за время измерений форма пленки не изменяется и свет падает перпендикулярно к поверхности пленки (решение)
9543.
16.10
Мыльная пленка, расположенная вертикально, образует клин вследствие стекания жидкости. При наблюдении интерференционных полос в отраженном свете ртутной дуги (λ = 546,1 нм), расстояние между пятью полосами оказалось l = 2 см. Найти угол клина. Свет падает перпендикулярно к поверхности пленки. Показатель преломления мыльной воды n = 1,33 (решение)
9542.
16.9
На мыльную пленку падает белый свет под углом 45 ° к поверхности плёнки. При какой наименьшей толщине пленки отраженные лучи будут окрашены в желтый цвет (λ = 600 нм)? Показатель преломления мыльной воды n = 1,33. (решение)
9541.
16.8
В опыте Юнга стеклянная пластинка толщиной h = 12 см помещается на пути одного из интерферирующих лучей перпендикулярно к лучу. На сколько могут отличаться друг от друга показатели преломления в различных местах пластинки, чтобы изменение разности хода от этой неоднородности не превышало 1 мкм (решение)
9540.
16.7
В опыте Юнга на пути одного из интерферирующих лучей помещалась тонкая стеклянная пластинка, вследствие чего центральная светлая полоса смещалась в положение, первоначально занятое пятой светлой полосой, не считая центральной. Луч падает перпендикулярно к поверхности пластинки, показатель преломления которой n = 1,5. Длина волны λ = 600 нм. Какова толщина пластинки (решение)
9539.
16.6
В опыте с зеркалами Френеля расстояние между мнимыми изображениями источника света d = 0,5 мм, расстояние до экрана L=5 м. В зеленом свете получились интерференционные полосы, расположенные на расстоянии l=5 мм друг от друга. Найти длину волны зеленого света (решение)
9538.
16.5
В опыте Юнга отверстия освещались монохроматическим светом, λ = 600 нм. Расстояние между отверстиями d = 1 мм, расстояние от отверстий до экрана L = 3 м. Найти положение трех первых светлых полос (решение)
9537.
16.4
Во сколько раз увеличится расстояние между соседними интерференционными полосами на экране в опыте Юнга, если зеленый светофильтр (λ1 = 500 нм) заменить красным (λ2 = 650 нм) (решение)
9536.
16.3
При фотографировании спектра звезды Андромеды было найдено, что линия титана (λ = 495,4 нм) смещена к фиолетовому концу спектра на 0,17 нм. Как движется звезда относительно Земли (решение)
9535.
16.2
Какая разность потенциалов была приложена между электродами гелиевой разрядной трубки, если при наблюдении вдоль пучка a-частиц максимальное доплеровское смещение линии гелия (λ= 492,2нм) получилось равным 0,8 нм (решение)
9534.
16.1
При фотографировании спектра Солнца было найдено, что желтая спектральная линия (λ = 589 нм) в спектрах, полученных от левого и правого краев Солнца, была смещена на 0,008 нм. Найти скорость вращения солнечного диска (решение)
9533.
15.69
Электрическая лампа с силой света I = 100 кд посылает во все стороны в единицу времени W = 122 Дж/мин световой энергии. Найти механический эквивалент света и кпд световой отдачи, если лампа потребляет мощность N = 100 Вт (решение)
9532.
15.68
Лист бумаги площадью S = 10x30 см2 освещается лампой с силой света I = 100 кд, причем на него падает 0,5% всего посылаемого лампой света. Найти освещенность листа бумаги (решение)
9531.
15.67
Какова должна быть освещенность листа бумаги в предыдущей задаче, чтобы его яркость была равна B = 10^4 кд/м3 (решение)
9530.
15.66
На лист белой бумаги площадью S = 20x30 см2 перпендикулярно к поверхности падает световой поток Ф = 120 лм. Найти освещенность, светимость и яркость бумажного листа, если коэффициент отражения ρ = 0,75 (решение)
9529.
15.65
Какую освещенность дает лампа предыдущей задачи на расстоянии r = 5 м при нормальном падении света (решение)
9528.
15.64
Лампа, в которой светящим телом служит накаленный шарик диаметром d = 3 мм, дает силу света I = 85 кд. Найти яркость лампы, если сферическая колба лампы сделана из прозрачного стекла; из матового стекла. Диаметр колбы D = 6 см (решение)
9527.
15.63
Спираль электрической лампочки с силой света I = 100 кд заключена в матовую сферическую колбу диаметром d=5 см; 10 см. Найти светимость и яркость лампы. Потерей света в оболочке колбы пренебречь. (решение)
9526.
15.62
Найти освещенность на поверхности Земли, вызываемую нормально падающими солнечными лучами. Яркость Солнца B = 1,2·10^9 кд/м2. (решение)
9525.
15.61
Предмет при фотографировании освещается электрической лампой, расположенной от него на расстоянии r1 = 2 м. Во сколько раз надо увеличить время экспозиции, если эту же лампу отодвинуть на расстояние r2 = 3 м от предмета (решение)
9524.
15.60
В центре круглого стола диаметром D = 1,2 м стоит настольная лампа из одной электрической лампочки, расположенной на высоте h1 = 40 см от поверхности стола. Над центром стола на высоте h2 = 2 м от его поверхности висит люстра из четырех таких же лампочек. В каком случае получится большая освещенность на краю стола и во сколько раз: когда горит настольная лампа или люстра (решение)
9523.
15.59
Над центром круглого стола диаметром D = 2 м висит лампа с силой света I = 100 кд. Найти изменение освещенности E края стола при постепенном подъеме лампы в интервале 0,5 < h < 0,9 м через каждые 0,1 м. Построить график E = f(h) (решение)
9522.
15.58
В центре квадратной комнаты площадью S = 25 м2 висит лампа. На какой высоте h от пола должна находиться лампа, чтобы освещенность в углах комнаты была наибольшей (решение)
9521.
15.57
В полдень во время весеннего и осеннего равноденствия Солнце стоит на экваторе в зените. Во сколько раз в это время освещенность поверхности Земли на экваторе больше освещенности поверхности Земли в Ленинграде? Широта Ленинграда φ = 60 ° (решение)
9520.
15.56
21 марта, в день весеннего равноденствия, на Северной Земле Солнце стоит в полдень под углом 10 ° к горизонту. Во сколько раз освещенность площадки, поставленной вертикально, будет больше освещенности горизонтальной площадки (решение)
9519.
15.55
Большой чертеж фотографируют сначала целиком, затем отдельные его детали в натуральную величину. Во сколько раз надо увеличить время экспозиции при фотографировании деталей (решение)
9518.
15.54
Лампа, подвешенная к потолку, дает в горизонтальном направлении силу света I = 60 кд. Какой световой поток падает на картину площадью S = 0,5 м2, висящую вертикально на стене на расстоянии r =2 м от лампы, если на противоположной стене находится большое зеркало на расстоянии a =2 м от лампы (решение)
9517.
15.53
Свет от электрической лампочки с силой света I = 200 кд падает под углом α = 45 на рабочее место, создавая освещенность E = 141 лк. На каком расстоянии от рабочего места находится лампочка? На какой высоте от рабочего места она висит (решение)
9516.
15.52
При помощи двояковыпуклой линзы, имеющей диаметр D = 9 см и фокусное расстояние F = 50 см, изображение Солнца проектируется на экран. Каким получается диаметр изображения Солнца, если его угловой диаметр a= 32′? Во сколько раз освещенность, создаваемая изображением Солнца, будет больше освещенности, вызываемой Солнцем непосредственно? (решение)
9515.
15.51
Телескоп имеет объектив с фокусным расстоянием F1 = 150 см и окуляр с фокусным расстоянием F2 = 10 см. Под каким углом зрения видна полная Луна в этот телескоп, если невооруженным глазом она видна под углом 31′ (решение)
9514.
15.50
Картину площадью S = 2x2 м2 снимают фотоаппаратом, установленным от нее на расстоянии a = 4,5 м. Изображение получилось размером s = 5x5 см2. Найти фокусное расстояние объектива аппарата. Расстояние от картины до объектива считать большим по сравнению с фокусным (решение)
9513.
15.49
Микроскоп состоит из объектива с фокусным расстоянием F1 = 2 мм и окуляра с фокусным расстоянием F2 = 40 мм. Расстояние между фокусами объектива и окуляра d =18 см. Найти увеличение, даваемое микроскопом (решение)
9512.
15.48
Зрительная труба с фокусным расстоянием F = 50 см установлена на бесконечность. После того как окуляр трубы передвинули на некоторое расстояние, стали ясно видны предметы, удаленные от объектива на расстояние a = 50 м. На какое расстояние передвинули окуляр при наводке (решение)
9511.
15.47
Какими должны быть радиусы кривизны поверхностей лупы, чтобы она давала увеличение для нормального глаза k = 10? Показатель преломления стекла, из которого сделана лупа, n = 1,5 (решение)
9510.
15.46
Найти увеличение, даваемое лупой с фокусным расстоянием F = 2 см, для нормального глаза с расстоянием наилучшего зрения L = 25 см; близорукого глаза с расстоянием наилучшего зрения L = 15 см (решение)
9509.
15.45
В фокальной плоскости двояковыпуклой линзы расположено плоское зеркало. Предмет находится перед линзой между фокусом и двойным фокусным расстоянием. Построить изображение предмета. (решение)
9508.
15.44
На расстоянии a1 = 40 см от линзы предыдущей задачи на оптической оси находится светящаяся точка. Найти положение изображения этой точки, если она испускает монохроматический свет с длиной волны: 760 нм; 430 нм (решение)
9507.
15.43
Найти продольную хроматическую аберрацию двояковыпуклой линзы из флинтгласа с радиусами кривизны R1 = R2 =8 см. Показатели преломления флинтгласа для красного (λкр = 760 нм) и фиолетового (λф = 430 нм) лучей равны n кр=1,5 и n ф = 1,8. (решение)
9506.
15.42
Плоско-выпуклая линза с радиусом кривизны R = 30 см и показателем преломления n = 1,5 дает изображение предмета с увеличением k = 2. Найти расстояния a1 и a2 предмета и изображения от линзы. Дать чертеж (решение)
1-50
51-100
...
3301-3350
3351-3400
3401-3450
3451-3500
3501-3550
...
8901-8950
8951-8965
Смотрите также:
Понедельник 25.11.2024
Политика конфиденциальности
Политика использования cookie
Объявления
Обратиться за помощью в учебе
Репетиторы, Заказ работ
Решебники
Лабораторные
Задачи
Книги
Форум
Copyright BamBookes © 2024
Политика конфиденциальности
|
Политика использования cookie