Поиск по сайту
 
Главная » Обучение » Решение задач » Теоретическая механика

[04.04.2017 19:23]
Решение 14642:

Яблонский Д3. Исследование колебательного движ ...
Подробнее смотрите ниже

Номер задачи на нашем сайте: 14642
ГДЗ из решебника: Тема: Динамика материальной точки
Задание Д.3. Исследование колебательного движения материальной точки

Нашли ошибку? Сообщите в комментариях (внизу страницы)
 
Раздел: Теоретическая механика
Полное условие:

Яблонский задание Д.3. Исследование колебательного движения материальной точки.
Варианты 1–5 (рис. 125). Найти уравнение движения груза D массой mD (варианты 2 и 4) или системы грузов D и E массами mD и mE (варианты 1, 3, 5), отнеся их движение к оси x; начало отсчета совместить с положением покоя груза D или соответственно системы грузов D и E (при статической деформации пружин). Стержень, соединяющий грузы, считать невесомым и недеформируемым.
Варианты 6–10 (рис. 125). Найти уравнение движения груза D массой m по гладкой наклонной плоскости, составляющей с горизонтом угол α, с момента соприкасания груза с пружиной или с системой пружин, предполагая, что при дальнейшем движении груз от пружин не отделяется. Движение груза отнести к оси x, приняв за начало отсчета положение покоя груза (при статической деформации пружин).
Варианты 11–15 (рис. 126). Груз D массой m укреплен на конце невесомого стержня, который может вращаться в горизонтальной плоскости вокруг оси E. Груз соединен с пружиной или с системой пружин; положение покоя стержня, показанное на чертеже, соответствует недеформированным пружинам. Считая, что груз D, принимаемый за материальную точку, движется по прямой, определить уравнение движения этого груза (трением скольжения груза по плоскости пренебречь).
Движение отнести к оси x, за начало отсчета принять точку, соответствующую положению покоя груза.
Варианты 16–20 (рис. 126). Найти уравнение движения груза D массой mD (варианты 17 и 19) или системы грузов D и E массами mD и mE (варианты 16, 18, 20), отнеся движение к оси x; начало отсчета совместить с положением покоя груза D или соответственно системы грузов D и E (при статической деформации пружин). Предполагается, что грузы D и E при совместном движении не отделяются.
Варианты 21–25 (рис. 127). Найти уравнение движения груза D массой m по гладкой наклонной плоскости, составляющей с горизонтом угол α, отнеся движение к оси x; за начало отсчета принять положение покоя груза (при статической деформации пружин).
Варианты 26–30 (рис. 127). Пренебрегая массой плиты и считая ее абсолютно жесткой, найти уравнение движения груза D массой m с момента соприкасания его с плитой, предполагая, что при дальнейшем движении груз от плиты не отделяется. Движение груза отнести к оси x, приняв за начало отсчета положение покоя этого груза (при статической деформации пружин).

Пример решения; Вариант 1; Вариант 2; Вариант 3; Вариант 4; Вариант 5; Вариант 6; Вариант 7; Вариант 8; Вариант 9; Вариант 10; Вариант 11; Вариант 12; Вариант 13; Вариант 14; Вариант 15; Вариант 16; Вариант 17; Вариант 18; Вариант 19; Вариант 20; Вариант 21; Вариант 22; Вариант 23; Вариант 24; Вариант 25; Вариант 26; Вариант 27; Вариант 28; Вариант 29; Вариант 30;

Решение, ответ задачи 14642 из ГДЗ и решебников:
Яблонский Д3. Исследование колебательного движения материальной точки, Задача 14642, Теоретическая механика
Идея нашего сайта - развиваться в направлении помощи ученикам школ и студентам. Мы размещаем задачи и решения к ним. Новые задачи, которые недавно добавляются на наш сайт, временно могут не содержать решения, но очень скоро решение появится, т.к. администраторы следят за этим. И если сегодня вы попали на наш сайт и не нашли решения, то завтра уже к этой задаче может появится решение, а также и ко многим другим задачам. основной поток посетителей к нам - это из поисковых систем при наборе запроса, содержащего условие задачи
Счетчики: 7838 | Добавил: Admin
Всего комментариев: 0
Добавить комментарий
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Обратиться за помощью в учебе

Copyright BamBookes © 2024
Политика конфиденциальности | Политика использования cookie