Поиск по сайту
 
Главная » Обучение » Решение задач » Геометрия

[09.10.2017 17:54]
Решение 15713:

Задачи на тему Пересекающиеся окру ...
Подробнее смотрите ниже

Номер задачи на нашем сайте: 15713
ГДЗ из решебника: Тема: Планиметрия
Пересекающиеся окружности

Нашли ошибку? Сообщите в комментариях (внизу страницы)
 
Раздел: Геометрия
Полное условие:

Подготовительные задачи

10.1. Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.

10.2. Окружности с центрами O1 и O2 пересекаются в точках A и B. Известно, что ∠ AO1B = 90°, ∠ AO2B=60°, O1O2=a. Найдите радиусы окружностей.

10.3. Отрезок, соединяющий центры двух пересекающихся окружностей, делится их общей хордой на отрезки, равные 5 и 2. Найдите общую хорду, если известно, что радиус одной окружности вдвое больше радиуса другой.

10.4. Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.

10.5. Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите расстояние между центрами окружностей, если BC = a и BD = b.

10.6. В треугольнике ABC на наибольшей стороне BC, равной b, выбирается точка M. Найдите наименьшее расстояние между центрами окружностей, описанных около треугольников BAM и ACM.

Тренировочные задачи

10.7. Две окружности радиусов 3 и 4, расстояние между центрами которых равно 5, пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, причём CD = 8 и точка B лежит между точками C и D. Найдите площадь треугольника ACD.

10.8. Дан ромб ABCD. Радиусы окружностей, описанных около треугольников ABC и BCD, равны 1 и 2. Найдите расстояние между центрами этих окружностей.

10.9. Две окружности радиусов √5 и √2 пересекаются в точке A. Расстояние между центрами окружностей равно 3. Через точку A проведена прямая, пересекающая окружности в точках B и C так, что AB = AC (точка B не совпадает с C). Найдите AB.

10.10. Первая из двух окружностей проходит через центр второй и пересекает её в точках A и B. Касательная к первой окружности, проходящая через точку A, делит вторую окружность в отношении m:n (m < n). В каком отношении вторая окружность делит первую?

10.11. Через общую точку C двух равных окружностей проведены две прямые, пересекающие данные окружности в точках A, B и M, N соответственно. Прямая AB параллельна линии центров, а прямая MN образует угол α с линией центров. Известно, что AB=a. Найдите NM.

10.12. В параллелограмме ABCD известны стороны AB = a, BC = b и угол ∠ BAD = α. Найдите расстояние между центрами окружностей, описанных около треугольников BCD и DAB.

10.13. Две окружности пересекаются в точках A и K. Их центры расположены по разные стороны от прямой, содержащей отрезок AK. Точки B и C лежат на разных окружностях. Прямая, содержащая отрезок AB, касается одной окружности в точке A. Прямая, содержащая отрезок AC, касается другой окружности также в точке A. Длина отрезка BK равна 1, длина отрезка CK равна 4, а тангенс угла CAB равен 1/√15. Найдите площадь треугольника ABC.

Решение, ответ задачи 15713 из ГДЗ и решебников:
Задачи на тему Пересекающиеся окружности - геометрия, Задача 15713, Геометрия
Идея нашего сайта - развиваться в направлении помощи ученикам школ и студентам. Мы размещаем задачи и решения к ним. Новые задачи, которые недавно добавляются на наш сайт, временно могут не содержать решения, но очень скоро решение появится, т.к. администраторы следят за этим. И если сегодня вы попали на наш сайт и не нашли решения, то завтра уже к этой задаче может появится решение, а также и ко многим другим задачам. основной поток посетителей к нам - это из поисковых систем при наборе запроса, содержащего условие задачи
Счетчики: 3391 | Добавил: Admin
Всего комментариев: 0
Добавить комментарий
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Обратиться за помощью в учебе

Copyright BamBookes © 2024
Политика конфиденциальности | Политика использования cookie