Раздел: Геометрия
Подготовительные задачи
Полное условие:
Подготовительные задачи
10.1. Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.
10.2. Окружности с центрами O1 и O2 пересекаются в точках A и B. Известно, что ∠ AO1B = 90°, ∠ AO2B=60°, O1O2=a. Найдите радиусы окружностей.
10.3. Отрезок, соединяющий центры двух пересекающихся окружностей, делится их общей хордой на отрезки, равные 5 и 2. Найдите общую хорду, если известно, что радиус одной окружности вдвое больше радиуса другой.
10.4. Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.
10.5. Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите расстояние между центрами окружностей, если BC = a и BD = b.
10.6. В треугольнике ABC на наибольшей стороне BC, равной b, выбирается точка M. Найдите наименьшее расстояние между центрами окружностей, описанных около треугольников BAM и ACM.
Тренировочные задачи
10.7. Две окружности радиусов 3 и 4, расстояние между центрами которых равно 5, пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, причём CD = 8 и точка B лежит между точками C и D. Найдите площадь треугольника ACD.
10.8. Дан ромб ABCD. Радиусы окружностей, описанных около треугольников ABC и BCD, равны 1 и 2. Найдите расстояние между центрами этих окружностей.
10.9. Две окружности радиусов √5 и √2 пересекаются в точке A. Расстояние между центрами окружностей равно 3. Через точку A проведена прямая, пересекающая окружности в точках B и C так, что AB = AC (точка B не совпадает с C). Найдите AB.
10.10. Первая из двух окружностей проходит через центр второй и пересекает её в точках A и B. Касательная к первой окружности, проходящая через точку A, делит вторую окружность в отношении m:n (m < n). В каком отношении вторая окружность делит первую?
10.11. Через общую точку C двух равных окружностей проведены две прямые, пересекающие данные окружности в точках A, B и M, N соответственно. Прямая AB параллельна линии центров, а прямая MN образует угол α с линией центров. Известно, что AB=a. Найдите NM.
10.12. В параллелограмме ABCD известны стороны AB = a, BC = b и угол ∠ BAD = α. Найдите расстояние между центрами окружностей, описанных около треугольников BCD и DAB.
10.13. Две окружности пересекаются в точках A и K. Их центры расположены по разные стороны от прямой, содержащей отрезок AK. Точки B и C лежат на разных окружностях. Прямая, содержащая отрезок AB, касается одной окружности в точке A. Прямая, содержащая отрезок AC, касается другой окружности также в точке A. Длина отрезка BK равна 1, длина отрезка CK равна 4, а тангенс угла CAB равен 1/√15. Найдите площадь треугольника ABC.
Решение, ответ задачи 15713 из ГДЗ и решебников: