Раздел: Геометрия
Подготовительные задачи
Полное условие:
Подготовительные задачи
9.1. Три равных окружности радиуса R касаются друг друга внешним образом. Найдите стороны и углы треугольника, вершинами которого служат точки касания.
9.2. Две равных окружности касаются изнутри третьей и касаются между собой. Соединив три центра, получим треугольник с периметром, равным 18. Найдите радиус большей окружности.
9.3. Три окружности радиусов 6, 7 и 8 попарно касаются друг друга внешним образом. Найдите площадь треугольника с вершинами в центрах этих окружностей.
9.4. Окружности радиусов 8 и 3 касаются внутренним образом. Из центра большей окружности проведена касательная к меньшей окружности. Найдите длину этой касательной.
9.5. Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается извне третьей окружности радиуса R в точках A и B соответственно. Найдите радиус r, если AB = 12, R = 8.
9.6. Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается изнутри третьей окружности радиуса R в точках A и B соответственно. Найдите радиус R, если AB = 11, r=5.
9.7. Дана окружность радиуса R. Четыре окружности равных радиусов касаются данной внешним образом, и каждая из этих четырёх окружностей касается двух других. Найдите радиусы этих четырёх окружностей.
9.8. Три окружности разных радиусов попарно касаются друг друга внешним образом. Отрезки, соединяющие их центры, образуют прямоугольный треугольник. Найдите радиус меньшей окружности, если радиусы большей и средней равны 6 и 4.
9.9. На прямой, проходящей через центр O окружности радиуса R, взята точка A на расстоянии a от центра. Найдите радиус второй окружности, которая касается прямой OA в точке A, а также касается данной окружности.
9.10. Даны окружности радиусов 1 и 3 с общим центром O. Третья окружность касается их обеих. Найдите угол между касательными к третьей окружности, проведёнными из точки O.
9.11. В угол, равный 60°, вписаны две окружности, касающиеся друг друга внешним образом. Радиус меньшей окружности равен r. Найдите радиус большей окружности.
9.12. Две окружности касаются друг друга внутренним образом. Известно, что два радиуса большей окружности, угол между которыми равен 60°, касаются меньшей окружности. Найдите отношение радиусов окружностей.
9.13. В равносторонний треугольник вписана окружность. Этой окружности и сторон треугольника касаются три малые окружности. Найдите сторону треугольника, если радиус малой окружности равен r.
9.14. В круговой сектор с центральным углом 120° вписана окружность. Найдите её радиус, если радиус данной окружности равен R.
9.15. Две окружности касаются внешним образом в точке K. Одна прямая касается этих окружностей в различных точках A и B, а вторая — соответственно в различных точках C и D. Общая касательная к окружностям, проходящая через точку K, пересекается с этими прямыми в точках M и N. Найдите MN, если AC = a, BD = b.
Тренировочные задачи
9.16. Окружность радиуса 2 касается внешним образом другой окружности в точке A. Общая касательная к обеим окружностям, проведённая через точку A, пересекается с другой их общей касательной в точке B. Найдите радиус второй окружности, если AB=4.
9.17. Две окружности касаются друг друга внешним образом в точке C. Радиусы окружностей равны 2 и 7. Общая касательная к обеим окружностям, проведённая через точку C, пересекается с другой их общей касательной в точке D. Найдите расстояние от центра меньшей окружности до точки D.
9.18. Окружность радиуса r касается некоторой прямой в точке M. На этой прямой по разные стороны от M взяты точки A и B, причём MA = MB = a. Найдите радиус окружности, проходящей через точки A и B и касающейся данной окружности.
9.19. Одна окружность описана около равностороннего треугольника ABC, а вторая вписана в угол A и касается первой окружности. Найдите отношение радиусов окружностей.
9.20. В окружность вписан равнобедренный треугольник с основанием a и углом при основании α. Кроме того, построена вторая окружность, касающаяся первой окружности и основания треугольника, причём точка касания является серединой основания. Найдите радиус второй окружности.
9.21. Две окружности с центрами O1, O2 и радиусами 32, пересекаясь, делят отрезок O1O2 на три равные части. Найдите радиус окружности, которая касается изнутри обеих окружностей и касается отрезка O1O2.
9.22. Две окружности радиусов R и r касаются сторон данного угла и друг друга. Найдите радиус третьей окружности, касающейся сторон того же угла, и центр которой находится в точке касания окружностей между собой.
9.23. В треугольнике ABC сторона BC равна a, радиус вписанной окружности равен r. Найдите радиусы двух равных окружностей, касающихся друг друга, если одна из них касается сторон BC и BA, а другая — BC и CA.
9.24. Две окружности радиусов 5 и 3 касаются внутренним образом. Хорда большей окружности касается меньшей окружности и делится точкой касания в отношении 3:1. Найдите длину этой хорды.
9.25. Две окружности, радиусы которых относятся как 9 - 4√3, касаются друг друга внутренним образом. Проведены две хорды большей окружности, равные по длине и касающиеся меньшей окружности. Одна из этих хорд перпендикулярна отрезку, соединяющему центры окружностей, а другая нет. Найдите угол между этими хордами.
9.26. Две окружности касаются внутренним образом. Прямая, проходящая через центр большей окружности, пересекает её в точках A и D, а меньшую окружность — в точках B и C. Найдите отношение радиусов окружностей, если AB:BC:CD = 3:7:2.
9.27. Две окружности касаются внутренним образом. Прямая, проходящая через центр меньшей окружности, пересекает большую окружность в точках A и D, а меньшую — в точках B и C. Найдите отношение радиусов окружностей, если AB:BC:CD = 2:4:3.
9.28. Две окружности радиусов R и r (R > r) касаются внешне в точке C. К ним проведена общая внешняя касательная AB, где A и B — точки касания. Найдите стороны треугольника ABC.
9.29. Две окружности радиусов R и r (R > r) касаются внешним образом. Прямая касается этих окружностей в различных точках A и B. Найдите радиусы окружностей, касающихся обеих данных окружностей и прямой AB.
9.30. Две окружности касаются внешним образом в точке C. Общая внешняя касательная касается первой окружности в точке A, а второй — в точке B. Прямая AC пересекает вторую окружность в точке D, отличной от C. Найдите BC, если AC = 9, CD =4.
9.31. Две окружности касаются друг друга внешним образом в точке A. Найдите радиусы окружностей, если хорды, соединяющие точку A с точками касания с одной из общих внешних касательных, равны 6 и 8.
9.32. Три окружности радиусов 1, 2 и 3 касаются друг друга внешним образом. Найдите радиус окружности, проходящей через точки касания этих окружностей.
9.33. Две окружности радиусов 5 и 4 касаются внешним образом. Прямая, касающаяся меньшей окружности в точке A, пересекает большую в точках B и C, причём AB = BC. Найдите AC.
9.34. Точка B — середина отрезка AC, причём AC = 6. Проведены три окружности радиуса 1 с центрами A, B и C. Найдите радиус четвёртой окружности, касающейся всех трёх данных.
9.35. Точка B — середина отрезка AC, причём AC = 6. Проведены три окружности радиуса 5 с центрами A, B и C. Найдите радиус четвёртой окружности, касающейся всех трёх данных.
9.36. Дана окружность с центром в точке O и радиусом 2. Из конца отрезка OA, пересекающегося с окружностью в точке M, проведена касательная AK к окружности, ∠ OAK = 60°. Найдите радиус окружности, вписанной в угол OAK и касающейся данной окружности внешним образом.
9.37. В круге с центром O хорда AB пересекает радиус OC в точке D, причём ∠ CDA = 120°. Найдите радиус окружности, вписанной в угол ADC и касающейся дуги AC, если OC = 2, OD = √3.
9.38. Окружности радиусов r и R касаются друг друга внутренним образом. Найдите сторону правильного треугольника, у которого одна вершина находится в точке касания данных окружностей, а две другие лежат на разных данных окружностях.
9.39. Радиусы окружностей S1 и S2, касающихся в точке A, равны R и r (R > r). Прямая, проходящая через точку B, лежащую на окружности S1, касается окружности S2 в точке C. Найдите BC, если известно, что AB = a.
9.40. Отношение радиусов окружностей S1 и S2, касающихся в точке B, равно k (k > 1). Из точки A, лежащей на окружности S1, проведена прямая, касающаяся окружности S2 в точке C. Найдите AC, если известно, что хорда, высекаемая окружностью S2 на прямой AB, равна b.
9.41. Окружность радиуса 1 касается окружности радиуса 3 в точке C. Прямая, проходящая через точку C, пересекает окружность меньшего радиуса в точке A, а большего радиуса — в точке B. Найдите AC, если AB = 2√5.
9.42. Окружность радиуса 2 касается окружности радиуса 4 в точке B. Прямая, проходящая через точку B, пересекает окружность меньшего радиуса в точке A, а окружность большего радиуса — в точке C. Найдите BC, если AC = З√2.
9.43. В угол вписано несколько окружностей, радиусы которых возрастают. Каждая следующая окружность касается предыдущей окружности. Найдите сумму длин второй и третьей окружностей, если радиус первой равен 1, а площадь круга, ограниченного четвёртой окружностью, равна 64п.
9.44. На отрезке AB, равном 2R, как на диаметре построена окружность. Вторая окружность того же радиуса, что и первая, имеет центр в точке A. Третья окружность касается первой окружности внутренним образом, второй окружности — внешним образом, а также касается отрезка AB. Найдите радиус третьей окружности.
9.45. В выпуклом четырёхугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, а вторая окружность касается сторон AB, BC и CD. Найдите AC.
9.46. В прямоугольном секторе AOB из точки B как из центра проведена дуга OC (C - точка пересечения этой дуги с дугой AB) радиуса BO. Окружность S1 касается дуги AB, дуги OC и прямой OA, причём точки касания различны, а окружность S2 касается дуги AB, прямой OA и окружности S1 (точки касания также попарно различны). Найдите отношение радиуса окружности к радиусу окружности S2.
9.47. На отрезке AC взята точка B и на отрезках AB, BC, CA как на диаметрах построены полуокружности S1, S2, S3 по одну сторону от AC. Найдите радиус окружности, касающейся всех трёх полуокружностей, если известно, что её центр удален от прямой AC на расстояние a.
9.48. Две окружности радиусов r и R (r < R) касаются друг друга внешним образом. Прямая касается этих окружностей в точках M и N. В точках A и B окружности касаются внешним образом третьей окружности. Прямые AB и MN пересекаются в точке C. Из точки C проведена касательная к третьей окружности (D - точка касания). Найдите CD.
Решение, ответ задачи 15664 из ГДЗ и решебников: