Бамбукес | Bambookes
Поиск по сайту
Решебник
Лабораторки
Задачи
Книги
Форум
РЕПЕТИТОРЫ и ЗАКАЗ РАБОТ
Главная
»
Обучение
»
Решение задач
»
Физика - Решение задач
В категории материалов:
8965
Показано материалов:
4401-4450
Список учебных материалов, доступных онлайн в данной категории:
Страницы:
«
1
2
...
87
88
89
90
91
...
179
180
»
8555.
4.13
Смесь свинцовых дробинок с диаметрами d1 = 3 мм и d2 = 1 мм опустили в бак с глицерином высотой h = 1 м. На сколько позже упадут на дно дробинки меньшего диаметра по сравнению с дробинками большего диаметра (решение)
8554.
4.12
Стальной шарик диаметром d = 1 мм падает с постоянной скоростью v = 0,185 см/с в большом сосуде, наполненном касторовым маслом. Найти динамическую вязкость касторового масла (решение)
8553.
4.11
Какой наибольшей скорости v может достичь дождевая капля диаметром d = 0,3 мм, если динамическая вязкость воздуха n = 1,2·10-5 Па*с (решение)
8552.
4.10
Шарик всплывает с постоянной скоростью v в жидкости, плотность которой в 4 раза больше плоскости материала шарика. Во сколько раз сила трения, действующая на всплывающий шарик, больше силы тяжести mg, действующей на этот шарик (решение)
8551.
4.9
Воздух продувается через трубку AB. За единицу времени через трубку AB протекает объем воздуха Vt = 5 л/мин. Площадь поперечного сечения широкой части трубки AB равна S1 = 2 см2, а узкой ее части и трубки abc равна S2 = 0,5 см2. Найти разность уровней воды, налитой в трубку abc (решение)
8550.
4.8
По горизонтальный трубе AB течет жидкость. Разность уровней этой жидкости в трубах а и b равна h = 10 см. Диаметры трубок а и b одинаковы. Найти скорость v течения жидкости в трубе (решение)
8549.
4.7
Какое давление р создает компрессор в краскопульте, если струя жидкой краски вылетает из него со скоростью v = 25 м/с (решение)
8548.
4.6
В сосуд льется вода, причем за единицу времени наливается объем воды V1 = 0,2 л/с. Каким должен быть диаметр d отверстия в дне сосуда, чтобы вода в нем держалась на постоянном уровне h = 8,3 см (решение)
8547.
4.5
Цилиндрической бак высотой h = 1 м наполнен до краев водой. За какое время t вся вода выльется через отверстие, расположенное у дна бака, если площадь S2 поперечного сечения отверстия в 400 раз меньше площади поперечного сечения бака? Сравнить это время с тем, которое понадобилось бы для вытекания того же объема воды, если бы уровень воды в баке поддерживался постоянным на высот h = 1 м от отверстия. (решение)
8546.
4.4
Сосуд, наполненный водой, сообщается с атмосферой через стеклянную трубку, закрепленную в горлышке сосуда. Кран К находится на расстоянии h2 = 2 см от дна сосуда. Найти скорость вытекания воды из крана в случае, если расстояние между нижним концом трубки и дном сосуда h1 = 2 см; 7,5 см; 10 см (решение)
8545.
4.3
На столе стоит сосуд с водой, в боковой поверхности которого имеется малое отверстие, расположенное на расстоянии h1, от дна сосуда и на расстоянии h2 от уровня воды. Уровень воды в сосуде поддерживается постоянным. На каком расстоянии l от сосуда по горизонтали струя воды падает на стол в случае, если h1 = 25 см, h2 = 16 см;h1 = 16 см, h2 = 25 см (решение)
8544.
4.2
В дне цилиндрического сосуда диаметром D = 0,5 м имеется круглое отверстие диаметром d = 1 см. Найти зависимость скорости понижения уровня воды в сосуде от высоты h этого уровня. Найти значение этой скорости для высоты h = 0,2 м. (решение)
8543.
4.1
Найти скорость v течения углекислого газа по трубе, если известно, что за время t = 30 мин через поперечное сечение трубы протекает масса газа m = 0,51 кг (решение)
8542.
3.50
Однородный шарик подвешен на нити, длина которой l равна радиусу шарика R. Во сколько раз период малых колебаний T1 этого маятника больше периода малых колебаний T2 математического маятника с таким же расстоянием от центра масс до точки подвеса (решение)
8541.
3.49
Какой наименьшей длины l надо взять нить, к которой подвешен однородный шарик диаметром D = 4 см, чтобы при определении периода малых колебаний шарика рассматривать его как математический маятник? Ошибка при таком допущении не должна превышать 1%. (решение)
8540.
3.48
Обруч диаметром D = 56,5 см висит на гвозде, вбитом в стенку, и совершает малые колебания в плоскости, параллельной стене. Найти период колебаний обруча. (решение)
8539.
3.47
На концах вертикального стержня укреплены два груза. Центр масс грузов находится ниже середины стержня на расстоянии d = 5 см. Найти длину стержня l, если известно, что период малых колебаний стержня с грузами вокруг горизонтальный оси, проходящей через его середину, 2 c. (решение)
8538.
3.46
Найти период колебания стержня предыдущей задачи, если ось вращения проходит через точку, находящуюся на расстоянии d = 10 см от его верхнего конца. (решение)
8537.
3.45
Однородный стержень длиной l = 0,5 м совершает малые колебания в вертикальной плоскости около горизонтальный оси, проходящей через его верхний конец. Найти период колебаний стержня. (решение)
8536.
3.44
Человек массой m0 = 60 кг находится на неподвижной платформе массой m = 100 кг. С какой частотой n будет вращаться платформа, если человек будет двигаться по окружности радиусом r = 5 м вокруг оси вращения? Скорость движения человека относительно платформы V0 = 4 км/ч. Радиус платформы R = 10 м. (решение)
8535.
3.43
Во сколько раз увеличилась кинетическая энергия платформы с человеком в условиях предыдущей задачи (решение)
8534.
3.42
Горизонтальная платформа массой m = 80 кг и радиусом R = 1 м вращается с частотой n1 = 20 об/мин. В центре платформы стоит человек и держит в расставленных руках гири. С какой частотой n2 будет вращаться платформа, если человек, опустив руки, уменьшит свой момент инерции от J1 = 2,94 до J2 = 0,98 кг*м2 (решение)
8533.
3.41
Какую работу А совершает человек при переходе от края платформы к ее центру в условиях предыдущей задачи? Радиус платформы R = 1,5 м. (решение)
8532.
3.40
Горизонтальная платформа массой m = 100 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n1 = 10 об/мин. Человек массой m0 = 60 кг стоит при этом на краю платформы. С какой частотой n2 начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу однородным диском, а человека точечной массой. (решение)
8531.
3.39
Карандаш длиной l = 15 см, поставленный вертикально, падает на стол. Какую угловую и линейную скорость v будет иметь в конце падения середина и верхний конец карандаша (решение)
8530.
3.38
Однородный стержень длиной l = 85 см подвешен на горизонтальной оси, проходящей через верхний конец стержня. Какую скорость v надо сообщить нижнему концу стержня, чтобы он сделал полный оборот вокруг оси (решение)
8529.
3.37
Однородный стержень длиной l = 1 м подвешен на горизонтальной оси, проходящей через верхний конец стержня. На какой угол надо отклонить стержень, чтобы нижний конец стержня при прохождении положения равновесия имел скорость v = 5 м/с (решение)
8528.
3.36
К ободу диска массой m = 5 кг приложена касательная сила F = 19,6 H. Какую кинетическую энергию будет иметь диск через время t = 5 с после начала действия силы (решение)
8527.
3.35
Маховик вращается с частотой n = 10 об/с. Его кинетическая энергия = 7,85 кДж. За какое время t момент сил M = 50 Н*м, приложенный к маховику, увеличит угловую скорость маховика вдвое (решение)
8526.
3.34
Маховое колесо начинает вращаться с угловым ускорением e = 0,5 рад/с2 и через время t1 = 15 с после начала движения приобретает момент импульса L = 73,5 кг*м2/с. Найти кинетическую энергию колеса через время t2 = 20 с после начала движения. (решение)
8525.
3.33
По ободу шкива, насаженного на общую ось с маховым колесом, намотана нить, к концу который подвешен груз массой m = 1 кг. На какое расстояние h должен опуститься груз, чтобы колесо со шкивом получило частоту вращения n = 60 об/мин? Момент инерции колеса со шкивом J = 0,42 кг*м2, радиус шкива R = 10 см. (решение)
8524.
3.32
Маховое колесо, момент инерции которого J = 245 кг*м2, вращается с частотой п = 20 об/с. После того как на колесо перестал действовать вращающий момент, оно остановилось, сделав N = 1000 об. Найти момент сил трения и время t, прошедшее от момента прекращения действия вращающего момента до остановки колеса. (решение)
8523.
3.31
Вентилятор вращается с частотой n = 900 об/мин, После выключения вентилятор, вращаясь равнозамедленно, сделал до остановки N = 75 об. Работа сил торможения А = 44,4 Дж. Найти момент инерции вентилятора и момент сил торможения (решение)
8522.
3.30
Колесо, вращаясь равнозамедленно, уменьшило за время t = 1 мин частоту вращения от n1 = 300 об/мин до m2 = 180 об/мин. Момент инерции колеса J = 2 кг*м2. Найти угловое ускорение e колеса, момент сил торможения, работу А сил торможения и число оборотов N, сделанных колесом за время 1 мин (решение)
8521.
3.29
Имеются два цилиндра: алюминиевый сплошной и свинцовый полый одинакового радиуса R = 6 см и одинаковой массы m = 0,5 кг. Поверхности цилиндров окрашены одинаково. Как, наблюдая поступательные скорости цилиндров у основания наклонной плоскости, можно различить их? Найти моменты инерции этих цилиндров. За какое время t каждый цилиндр скатится без скольжения с наклонной плоскости? Высота наклонной плоскости h = 0,5 м, угол наклона плоскости 30, начальная скорость каждого цилиндра 0 (решение)
8520.
3.28
Найти линейные скорости v движения центров масс шара, диска и обруча, скатывающихся без скольжения с наклонной плоскости. Высота наклонной плоскости h = 0,5 м, начальная скорость всех тел v0 = 0. Сравнить найденные скорости со скоростью тела, соскальзывающего с наклонной плоскости при отсутствии трения. (решение)
8519.
3.27
Найти линейные ускорения а центров масс шара, диска и обруча, скатывающихся без скольжения с наклонной плоскости. Угол наклона плоскости 30, начальная скорость всех тел v0 = 0. Сравнить найденные ускорения с ускорением тела, соскальзывающего с наклонной плоскости при отсутствии трения. (решение)
8518.
3.26
Медный шар радиусом R = 10 см вращается с частотой n = 2 об/с вокруг оси, проходящей через его центр. Какую работу А надо совершить, чтобы увеличить угловую скорость вращения шара вдвое (решение)
8517.
3.25
С какой наименьшей высоты h должен съехать велосипедист, чтобы по инерции без трения проехать дорожку, имеющую форму мертвой петли радиусом R = 3 м и смог оторваться от дорожки в верхней точке петли? Масса велосипедиста вместе с велосипедом m = 75 кг, причем на колеса приходится масса 3 кг. Колеса велосипеда считать обручами (решение)
8516.
3.24
Мальчик катит обруч по горизонтальной дороге со скоростью v = 7,2 км/ч. На какое расстояние s может вкатиться обруч на горку за счет его кинетической энергии? Уклон горки равен 10 м на каждые 100 м пути (решение)
8515.
3.23
Найти кинетическую Wк энергию велосипедиста, едущего со скоростью v = 9 км/ч. Масса велосипедиста вместе с велосипедом m = 78 кг, причем на колеса приходится масса 3 кг. Колеса велосипеда считать обручами. (решение)
8514.
3.22
Кинетическая энергия вала, вращающегося с частотой n = 5 об/с, Wк = 60 Дж. Найти момент импульса вала (решение)
8513.
3.21
Диск диаметром D = 60 см и массой m = 1 кг вращается вокруг оси, проходящей через центр перпендикулярно к его плоскости с частотой n = 20 об/с. Какую работу А надо совершить, чтобы остановить диск (решение)
8512.
3.20
Найти относительную ошибку, которая получится при вычислении кинетической энергии Wк катящегося шара, если не учитывать вращения шара. (решение)
8511.
3.19
Шар массой m = 1 кг катится без скольжения, ударяется о стенку и откатывается от нее. Скорость шара до удара о стенку v = 10 см/с, после удара u = 8 см/с. Найти количество теплоты Q, выделившееся при ударе шара о стенку. (решение)
8510.
3.18
Обруч и диск одинаковой массы m1 = m2 катятся без скольжения с одной и той же скоростью v. Кинетическая энергия обруча Wк1 = 4 кгс*м. Найти кинетическую энергию Wк2 диска. (решение)
8509.
3.17
Шар диаметром D = 6 см и массой m = 0,25 кг катится без скольжения по горизонтальной плоскости с частотой вращения n = 4 об/с. Найти кинетическую энергию Wк шара. (решение)
8508.
3.16
Диск массой m = 2 кг катится без скольжения по горизонтальный плоскости со скоростью v = 4 м/с. Найти кинетическую энергию диска. (решение)
8507.
3.15
Блок массой m = 1 кг укреплен на конце стола. Гири 1 и 2 одинаковой массы m1 = m2 = 1 кг соединены нитью, перекинутой через блок. Коэффициент трения гири 2 о стол k = 0,1. Найти ускорение a, с которым движутся гири, и силы натяжения нитей. Блок считать однородным диском (решение)
8506.
3.14
Две гири с разными массами соединены нитью, перекинутой через блок, момент инерции которого J = 50 кг*м2 и радиус R = 20 см. Момент сил трения вращающегося блока 98,1 Н*м. Найти разность сил натяжения нити T1 - T2 по обе стороны блока, если известно, что блок вращается с угловым ускорением e = 2,36 рад/с2. Блок считать однородным диском. (решение)
1-50
51-100
...
4301-4350
4351-4400
4401-4450
4451-4500
4501-4550
...
8901-8950
8951-8965
Смотрите также:
Воскресенье 24.11.2024
Политика конфиденциальности
Политика использования cookie
Объявления
Обратиться за помощью в учебе
Репетиторы, Заказ работ
Решебники
Лабораторные
Задачи
Книги
Форум
Copyright BamBookes © 2024
Политика конфиденциальности
|
Политика использования cookie