Бамбукес | Bambookes
Поиск по сайту
Решебник
Лабораторки
Задачи
Книги
Форум
РЕПЕТИТОРЫ и ЗАКАЗ РАБОТ
Главная
»
Обучение
»
Решение задач
»
Физика - Решение задач
В категории материалов:
8965
Показано материалов:
4001-4050
Список учебных материалов, доступных онлайн в данной категории:
Страницы:
«
1
2
...
79
80
81
82
83
...
179
180
»
8955.
9.11
В вершинах правильного шестиугольника расположены три положительных и три отрицательных заряда. Найти напряженность электрического поля в центре шестиугольника при различных комбинациях в расположении этих зарядов. Каждый заряд 1,5 нКл; сторона шестиугольника 3 см (решение)
8954.
9.10
В центр квадрата, в каждой вершине которого находится заряд q = 2,33 нКл, помещен отрицательный заряд q0. Найти этот заряд, если на каждый заряд q действует результирующая сила F = 0. (решение)
8953.
9.9
Найти напряженность электрического поля в точке, лежащей посередине между точечными зарядами q1 = 8 нКл и q2 = -6 нКл. Расстояние между зарядами 10 см; e = 1 . (решение)
8952.
9.8
Построить график зависимости энергии электростатического взаимодействия двух точечных зарядов от расстояния r между ними в интервале 2 < r <10 см через каждые 2 см. Заряды q1 = 1 нКл и q2 = 3 нКл; e = 1. График построить для одноименных; разноименных зарядов. (решение)
8951.
9.7
Во сколько раз энергия электростатического взаимодействия двух частиц с зарядом q и массой m каждая больше энергия их гравитационного взаимодействия? Задачу решить для электронов; протонов (решение)
8950.
9.6
Два металлических одинаково заряженных шарика массой m = 0,2 кг каждый находятся на некотором расстоянии друг от друга. Найти заряд шариков, если известно, что на этом расстоянии энергия их электростатического взаимодействия в миллион раз больше энергии их гравитационного взаимодействия (решение)
8949.
9.5
Найти силу электростатического отталкивания между ядром атома натрия и бомбардирующим его протоном, считая, что протон подошел к ядру атома натрия на расстояние 6·10-14 м. Заряд ядра натрия в 11 раз больше заряда протона. Влиянием электронной оболочки атома натрия пренебречь. (решение)
8948.
9.4
Во сколько раз сила гравитационного притяжения между двумя протонами меньше силы их электростатического отталкивания (решение)
8947.
9.3
Построить график зависимости силы взаимодействия между двумя точечными зарядами от расстояния r между в интервале 2 < r < 10 см через каждые 2 см. q1 = 20 и q2 = 30 нКл (решение)
8946.
9.2
Два точечных заряда, находясь в воздухе на расстоянии r1 = 20 см друг от друга, взаимодействуют с некоторой силой. На каком расстоянии нужно поместить эти заряды в масле, чтобы получить ту же силу взаимодействия (решение)
8945.
9.1
Найти силу притяжения между ядром атома водорода и электроном. Радиус атома водорода 0,5·10-10 м; заряд ядра равен по модулю и противоположен по знаку заряду электрона (решение)
8944.
8.41
Железная проволока длиной l = 5 м висит вертикально. На сколько изменится объем проволоки, если к ней привязать гирю массой m = 10 кг? Коэффициент Пуассона для железа 0,3 (решение)
8943.
8.40
Найти относительное изменение плотности цилиндрического медного стержня при сжатии его давлением pн = 9.8·10^7 Па. Коэффициент Пуассона для меди 0,34 (решение)
8942.
8.39
Найти коэффициент Пуассона, при котором объем проволоки при растяжении не меняется (решение)
8941.
8.38
При протекании электрического тока через обмотку гальванометра на его рамку с укрепленным на ней зеркальцем действует закручивающий момент M = 2·10-13 Н·м. Рамка при этом поворачивается на малый угол. На это закручивание идет работа 8,7·10-16 Дж. На какое расстояние переместится зайчик от зеркальца по шкале, удаленной на расстояние 1 м от гальванометра (решение)
8940.
8.37
Найти потенциальную энергию проволоки длиной l = 5 см и диаметром d = 0,04 мм, закрученной на угол 10 (решение)
8939.
8.36
Зеркальце гальванометра подвешено на проволоке длиной l = 10 см и диаметром d = 0,01 мм. Найти закручивающий момент, соответствующий отклонению зайчика на величину 1 мм по шкале, удаленной на расстояние L = 1 м от зеркальца (решение)
8938.
8.35
Найти момент пары сил M, необходимый для закручивания проволоки длиной l = 10 см и радиусом r = 0,1 мм на угол 10. Модуль сдвига материала проволоки 4,9·10^10 (решение)
8937.
8.34
На рис. AB железная проволока, CD медная проволока такой же длины и с таким же поперечным сечением, BD стержень длиной l = 80 см. На стержень подвесили груз массой m = 2 кг. На каком расстоянии x от точки В надо его подвесить, чтобы стержень остался горизонтальным (решение)
8936.
8.33
Имеется резиновый шланг длиной l = 50 см и внутренним диаметром d1 = 1 см. Шланг натянули так, что его длина стала на 10 см больше. Найти внутренний диаметр d2 натянутого шланга, если коэффициент Пуассона для резины 0,5 (решение)
8935.
8.32
Из резинового шнура длиной l = 42 см и радиусом r = 3 мм сделана рогатка. Мальчик, стреляя из рогатки, растянул резиновый шнур на 20 см. Найти модуль Юнга для этой резины, если известно, что камень массой m = 0,02 кг, пущенный из рогатки, полетел со скоростью 20 м/с (решение)
8934.
8.31
К стальной проволоке длиной l = 1 м и радиусом r = 1 мм подвесили груз массой m = 100 кг. Найти работу растяжения проволоки (решение)
8933.
8.30
Однородный стержень вращается вокруг вертикальной оси, проходящей через его середину. Стержень разрывается, когда скорость конца достигает v = 380 м/с. Найти предел прочности материала стержня (решение)
8932.
8.29
Однородный медный стержень длиной l = 1 м равномерно вращается вокруг вертикальной оси, проходящей через один из его концов. При какой частоте вращения стержень разорвется (решение)
8931.
8.28
К железной проволоке длиной l = 50 см и диаметром d = 1 мм привязана гиря массой m = 1 кг. С какой частотой можно равномерно вращать в вертикальной плоскости такую проволоку с грузом, чтобы она не разорвалась (решение)
8930.
8.27
К стальной проволоке радиусом r = 1 мм подвешен груз массой m = 100 кг. На какой наибольший угол можно отклонить проволоку с грузом, чтобы она не разорвалась при прохождении этим грузом положения равновесия (решение)
8929.
8.26
С крыши дома свешивается стальная проволока длиной l = 40 м и диаметром d = 2 мм. Какую нагрузку может выдержать эта проволока? На сколько удлинится эта проволока, если на ней повиснет человек массой m = 70 кг? Будет ли наблюдаться остаточная деформация, когда человек отпустит проволоку (решение)
8928.
8.25
Для измерения глубины моря с парохода спустили гирю на стальном тросе. Какую наибольшую глубину можно измерить таким способом? Массой гири по сравнению с массой троса пренебречь. (решение)
8927.
8.24
Решить предыдущую задачу для свинцовой проволоки (решение)
8926.
8.23
Найти длину медной проволоки, которая, будучи подвешена вертикально, начинает рваться под действием собственной силы тяжести (решение)
8925.
8.22
Каким должен быть предельный диаметр d стального троса, чтобы он выдержал нагрузку F = 9,8 кН (решение)
8924.
8.21
При растяжении медной проволоки, поперечное сечение которой S = 1,5 мм2, начало остаточной деформации наблюдалось при нагрузке 44,1 Н. Каков предел упругости материала проволоки (решение)
8923.
8.20
На нагревание медной болванки массой m = 1 кг, находящейся при температуре t0 = 0, затрачено количество теплоты 138,2 кДж. Во сколько раз при этом увеличился ее объем? Удельную теплоемкость меди найти по закону Дюлонга и Пти. (решение)
8922.
8.19
Какую длину l0 должны иметь при температуре t0 = 0 стальной и медный стержни, чтобы при любой температуре стальной стержень был длиннее медного на 5 см (решение)
8921.
8.18
При нагревании некоторого металла от t0 = 0 до t = 500° С его плотность уменьшается в 1,027 раза. Найти для этого металла коэффициент линейного расширения, считая его постоянным в данном интервале температур. (решение)
8920.
8.17
Медная проволока натянута горячей при температуре t1 = 150 между двумя прочными неподвижными стенками. При какой температуре t2, остывая, разорвется проволока? Считать, что закон Гука справедлив вплоть до разрыва проволоки. (решение)
8919.
8.16
К стальной проволоке радиусом 1 мм подвешен груз. Под действием этого груза проволока получила такое же удлинение. как при нагревании на Δt = 20. Найти массу груза (решение)
8918.
8.15
Какую силу F надо приложить к концам стального стержня с площадью поперечного сечения 10 см2, чтобы не дать ему расшириться при нагревании от t0 = 0 до t = 30 (решение)
8917.
8.14
Металлический цилиндрический сосуд радиусом R = 9 см наполнен льдом при температуре t1 = 0. Сосуд теплоизолирован слоем пробки толщиной d = 1 см. Через какое время весь лед, находящийся в сосуде, растает, если температура наружного воздуха t2 = 25? Считать, что обмен тепла происходит только через боковую поверхность сосуда средним радиусом 9,5 см (решение)
8916.
8.13
На плите стоит алюминиевая кастрюля диаметром D = 15 см, наполненная водой. Вода кипит, и при этом за время 1 мин образуется масса m = 300 г водяного пара. Найти температуру внешней поверхности дна кастрюли, если толщина его d = 2 мм (решение)
8915.
8.12
Площадь поперечного сечения медного стержня 10 см2, длина стержня 50 см. Разность температур на концах стержня 15 К. Какое количество теплоты проходит в единицу времени через стержень? Потерями тепла пренебречь. (решение)
8914.
8.11
Один конец железного стержня поддерживается при температуре t1 = 100 C, другой упирается в лед. Длина стержня l= 14 см, площадь поперечного сечения 2 см2. Найти количество теплоты, протекающее в единицу времени вдоль стержня. Какая масса льда растает за время 40 мин (решение)
8913.
8.10
Какое количество теплоты теряет за время 1 мин комната с площадью пола S = 20 м2 и высотой h = 3 м через четыре кирпичные стены? Температура в комнате t1 = 15 , температура наружного воздуха t2 = -20. Теплопроводность кирпича λ = 0.84 Вт/(м·К) (решение)
8912.
8.9
Наружная поверхность стены имеет температуру t1 = -20, внутренняя температуру t2 = 20. Толщина стены d = 40 см. Найти теплопроводность материала стены, если через единицу ее поверхности за время 1 ч проходит количество теплоты 460,5 кДж/м2. (решение)
8911.
8.8
Пластинки из меди толщиной d1 = 9 мм и железа толщиной d2 = 3 мм сложены вместе. Внешняя поверхность медной пластинки поддерживается при температуре t1 = 50, внешняя поверхность железной при температуре t2 = 0. Найти температуру поверхности их соприкосновения. Площадь пластинок велика по сравнению с толщиной (решение)
8910.
8.7
Свинцовая пуля, летящая со скоростью v = 400 м/с, ударяется о стенку и входит в нее. Считая, что 10% кинетической энергии пули идет на ее нагревание, найти, на сколько градусов нагрелась пуля. Удельную теплоемкость свинца найти по закону Дюлонга и Пти. (решение)
8909.
8.6
Пользуясь законом Дюлонга и Пти, найти, во сколько раз удельная теплоемкость алюминия больше удельной теплоемкости платины. (решение)
8908.
8.5
Пользуясь законом Дюлонга и Пти, найти, из какого материала сделан металлический шарик массой m = 0,025 кг, если известно, что для его нагревания от t1 = 10 до t2 = 30 потребовалось затратить количество теплоты 117Дж (решение)
8907.
8.4
Пользуясь законом Дюлонга и Пти, найти удельную теплоемкость меди; железа; алюминия (решение)
8906.
8.3
Температура плавления железа изменяется на 0,012 К при изменении давления на 98 кПа. На сколько меняется при плавлении объем количества ν = 1 кмоль железа (решение)
1-50
51-100
...
3901-3950
3951-4000
4001-4050
4051-4100
4101-4150
...
8901-8950
8951-8965
Смотрите также:
Воскресенье 24.11.2024
Политика конфиденциальности
Политика использования cookie
Объявления
Обратиться за помощью в учебе
Репетиторы, Заказ работ
Решебники
Лабораторные
Задачи
Книги
Форум
Copyright BamBookes © 2024
Политика конфиденциальности
|
Политика использования cookie